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Abstract: The shape preferred orientation of rock constituents results in an overall mechanical

anisotropy. A differential effective medium (DEM) type of scheme predicting the effective anisotropic

viscosity of a composite consisting of aligned elliptical inclusions is proposed and validated by finite

element modeling. A comparison with an existing self-consistent averaging (SCA) scheme is given and

the DEM scheme is shown to provide an improved estimate of the effective normal and shear viscosi-

ty for high inclusion concentrations.
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It has been recognized that the overall mechanical
response of a heterogeneous rock may become
anisotropic due to the development of shape preferred
orientation (SPO). In the limiting case, a laminate of
equal phase abundances exhibits a maximal degree of
the anisotropy, where shear and normal viscosities yield
values corresponding to the lower (Reuss) and upper
(Voigt) theoretical bounds. The model of a laminate is
not suitable for studying the transient stage of the
anisotropy evolution during the SPO build up. Another
analytical estimates of the overall anisotropy incorporat-
ing a finite magnitude of SPO was proposed (Fletcher,
2004). The model builds on an analytical solution for
an elliptical inclusion embedded in an anisotropic
matrix (Willis, 1964) and the effective normal and shear
viscosities are evaluated using the self-consistent averag-
ing technique. In this work, we derive and numerically
validate an overall anisotropic viscosity estimate based
on the differential effective medium approach.

Methods
Analytical model

The effective normal ©¢”" and shear u% viscosities are
defined as the ratios of the appropriate components of
the spatial averages of the deviatoric and strain rate.
The fundamental relation between inclusion pe and
host pest viscosity, inclusion concentration f and
effective viscosity pe is given by (Nemat-Nasser and

Hori, 1993):
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In the dilute limit, the strain rate average in the
inclusion phase may be approximated by the strain
rate of an isolated inclusion embedded in an
isotropic host. The strain rate within the inclusion
is uniform and given by (Willis, 1964):
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where n=1/2(c+01) is the shape factor, o is the
aspect ratio of the inclusion, d=p,ot/utest is the
anisotropy factor and R,=uincju bost, R=pincjy bost are
the inclusion-host viscosity ratios. Hence, the nor-
mal and shear viscosity of a dilute composite consist-
ing of aligned inclusions can be estimated using the
isotropic limit of (2) in (1):
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where R = pinclfubost is the ratio of the inclusion and
host viscosity.

Self-consistent averaging (SCA) has been applied to
a composite consisting of aligned ellipses by Treagus
(2003) and Fletcher (2004). In this approach, the
viscosity ratios in (3) are evaluated with respect to
the effective medium and not the original host
material. In Fletcher’s work, the inclusion strain
rate has been evaluated according to (2) taking into
account the overall anisotropy. The effective normal
viscosity normalized by the host viscosity
B,=w e and the effective anisotropy factor oo
are determined by solving a system of non-linear
equations:
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In the differential effective medium (DEM)
another approach is taken to estimate overall
properties at high concentration. Here, the
medium is constructed in an iterative manner
by placing individual inclusions into the host
and reevaluating the host properties afterwards
(e.g. Berryman ez al. 2002). We use a DEM
scheme that takes into account the anisotropy
according to (2). The effective viscosities are
obtained by integrating two coupled ordinary
differential equations:
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where =1/ and the initial values of both 3, and
B, are 1.

Finite element modelling

To validate the SCA and DEM schemes, a finite
element model (FEM) that allows us to directly
resolve the mechanical response of composites con-
sisting of numerous inclusions of a constant size
and orientation is employed. A large number of
inclusions is needed for a sufficient representation
of the composite. This results in a high discretiza-
tion level in our models with resolutions that
exceed one million degrees of freedom. In this
study we utilize our optimized unstructured mesh
FEM code MILAMIN implemented entirely in
MATLAB (Dabrowski ez al., 2008). We systemati-
cally scan through the parameter space of inclusion
concentration (up to 50%), aspect ratio (up to 16)
and viscosity ratio (between 1/1000 and 1000).
Non-overlapping inclusions of equal size are seed-
ed randomly in the computational domain. The
effective normal and shear viscosity are measured
by applying corresponding kinematic boundary
conditions.

Results

Numerical and analytical results for models con-
sisting of elliptical inclusions are presented in fig-
ure 1. It is evident in figure la that the presence
of the strong host results in a higher effective vis-
cosity for composites of equal phase concentra-
tions. The scatter of the effective viscosity due to
changing the composite configuration increases
with the inclusion concentration. However, even
in densely packed cases, the spread is rather small
and the data presented at 5% concentration incre-
ments overlap minimally in terms of effective vis-
cosity. The impact of the viscosity ratio on the
effective viscosity is depicted in figure 1b for
models with 40% of inclusions. The effective vis-
cosity is virtually insensitive to inclusion or host
viscosity changes once the strong to weak phase
viscosity ratio exceeds several hundred. The SCA
provides a good estimate of the effective viscosity
for inclusion concentrations below thirty percent.
The SCA fails to predict the saturation effect for
high concentrations and towards large viscosity
ratios. The DEM estimate captures the effective
viscosity saturation and provides a good fit to the
numerical results.

Numerical simulations show that the effective nor-
mal viscosity is systematically greater than the shear
viscosity (Fig. 1c). Both components saturate with
respect to the viscosity ratio changes (Fig. 1d).
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Figure 1. Effective viscosity of composites consisting of 256 non-overlapping inclusions. Open and filled bars correspond to models
with weak and strong inclusion, respectively. Bottom and top of the bars are given by minimal and maximal values recorded for 10 sam-
ples. Upper (Voigt) and lower (Reuss) bounds, self-consistent average (SCA) and differential effective medium estimate for strong
(DEM-sh, nDEM-sh, sDEM-sh) and weak host (DEM-wh, nDEM-wh, sDEM-wh) are given. Prefixes n and s indicate normal and
shear viscosity; (a) viscosity ratio is set to 100 and concentration refers to the strong phase, (b) concentration is fixed at 40% and inclu-
sion-host viscosity ratio is varied, (c) viscosity ratio is set to 100, aspect ratio set to 4 and concentration refers to the strong phase, (d)
concentration is fixed at 40%, aspect ratio set to 4 and inclusion-host viscosity ratio is varied.
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The effective viscosities respect the theoretical upper
and lower bounds in all simulation runs. The DEM
provides a good fit to the numerical data over the
whole range of concentrations, whereas the quality of
the SCA estimate deteriorates for densely packed com-
posites. The normal viscosity in the weak case (or the
shear viscosity in the strong case) is particularly precise-
ly estimated.

Discussion

The DEM model provides better estimates over the
SCA for high concentrations. The discrepancies
between the scheme predictions reflect a fundamental
difference between the two methods: the DEM is
designed for inclusion-host systems, whereas the SCA
is more suitable for a poly-grain medium, where none
of the phases can be considered as inclusions.

This statement is corroborated by the FEM results
that are predicted by the DEM scheme with a high
accuracy up to large concentrations irrespective of the
inclusion aspect ratio.

Our FEM results show that choosing a weak or strong
phase for the inclusions leads to a significantly differ-
ent effective response. This is in agreement with the
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