
Some kinematic properties of complex  eigenvalues in
3D homogeneous flows

Abstract: A mathematical investigation on some kinematic properties of 3D homogeneous flows
defined by complex eigenvalues is presented. We demonstrate by mean of simple algebra analysis, that
in a 3D flow system a clear threshold between pulsating and non-pulsating fields does not exist. This
implies that the existence of a stable or pulsating pattern in 3D flow is not simply imposed by the kine-
matic vorticity numbers. Moreover, we show theoretically that a 3D flow path having complex eigen-
values could evolve into a stable flow path. These results are applied to the kinematic analysis of some
non-dilational and dilational monoclinic and triclinic flows.
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In homogeneous and steady state flow we can
describe the kinematics of structures in terms of either
velocity or deformation gradients. Applying these
concepts to deformable rocks, we can study the pro-
gressive deformation and related deformation path
pattern in 2D or simple 3D systems. In detail, steady
state flow patterns are critically dependent on flow
parameters like the relative magnitude of the vorticity
number (Wn), dilatancy parameter (An) and strain
rate. In line with this approach, Ramberg (1974) and
McKenzie (1979) indicated for which vorticity and
strain rate ratio several pulsating and non-pulsating
strain paths can occur. Ramberg (1974) showed that
for 2D deformation, the threshold limit between the
oscillatory and non-oscillatory field is defined by the
eigenvalues of the strain rate matrix. If the eigenvalues
are all real numbers, the eigenflows give rise to expo-
nential deformation paths and the eigenvectors
behave or as attractors or as repulsor (Ruelle, 1981;
Passchier, 1997). If the eigenvalues are purely imagi-
nary, the eigenvectors do not behave neither as attrac-
tor or repulsor (Ramberg, 1974; Weijermars, 1993).

A complete description of such pulsating strain in 2D
flow systems based on analytical and experimental
work was presented by Weijermars (1991, 1993,
1998) and Weijermars and Poliakov (1993). Some
examples of 3D pulsating path and strain history were
first described analytically by Weijermars (1997).
However a complete analytical and geometrical analy-
sis of 3D flow patterns controlled by real or complex
eigenvalues as well as their relative kinematics mean-
ing in deformed rocks is lacking in the literature. In
this contribution, we introduce a complete algebraic
discussion of general 3D flow in domains where com-
plex eigenvalues can occur and we discuss their kine-
matical meanings and relevance in describing geolog-
ical structures. 

Methods

Following Ramberg (1974) and McKenzie (1979) the
flow can be described with respect to a geographic ref-
erence system by the velocity gradient tensor Lij. The
velocity gradient tensor (or flow matrix) Lij could be
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decomposed into a symmetric stretching tensor Dij
and an antisymmetric vorticity tensor W’ij as follows:

(1).

The first term on the right, Dij, is also called strain rate
matrix, the second term, W’ij, describes, in a steady
state and homogeneous flow, the angular velocity of an
orthogonal pair of material lines in the deformation
medium with respect to a geographical reference sys-
tem. Eigenvectors of the Dij term represent the maxi-
mum, medium and minimum Instantaneous Streching
Axes (hereafter called ISA) of the flow pattern. If Lij
does not change from point to point, the flow is homo-
geneous, otherwise it is heterogeneous. If Lij does not
vary with time, the flow is steady, otherwise it is not
steady. As showed by Jiang (1994), heterogeneous flow
is inevitably non steady. In this paper we will limit our
analysis to steady and homogeneous flows without loss
of generality. In a steady flow, ISA and eigenvector of
Lij represent directions that do not change orientation
during the progressive deformation history. Now let’s
consider a 3D flow system in which we fix again our
reference system to the ISA, ideally moving the exter-
nal reference system to the internal ISA system. In this
reference system, the spinning matrix defines exactly
the non coaxial component and their eigenvalues are
zero. Hereafter, the coordinate system x, y, z will be
considered with respect to the ISA.  Following Iacopini
et al. (2007), a general flow matrix Lij written with
respect to the ISA can be simplified as:

(2),

where p, q, r are the off-diagonal coefficient of the
gradient velocity tensor (function of the angular
velocity and shear angular values) and a, b, c represent
the stretching rate components. This tensor can be
monoclinic or triclinic depending on the off-diagonal
components. The time-integration of the strain rate
matrix (eq. 2) gives rise to the finite position gradient
tensor at time t, accumulated by progressive deforma-
tion at constant invariable flow parameters
(Ramberg, 1974), that rewritten respect to the ISA
reference coordinate system, using the Tikoff and
Fossen formulation (Tikoff and Fossen, 1993), give
rise to the following displacement path equation:

(3),

where Ci, similarly to the 2D case, represents the coordi-
nate coefficient, function of initial condition. To describe
the flow pattern produced by equation (3) it is necessary
to understand the properties of the eigenvalues λi and the
column vectors νi. The νij column vectors represent the
correspondent eigenvectors of λi. In a steady flow, the
eigenvectors νi control the main flow pattern defining the
main attractors and repulsors if defined by real eigenval-
ues (Passchier, 1997). The eigenvectors defined by com-
plex eigenvalues hereafter are called “ghostvectors”. The
eigenvalues λi of the matrix Lij are obtained calculating
the roots of the characteristic polynomial of Lij which are:

(4),

rewritten as:

(4a),

being:

(4b),

In this case, the polynomial characteristic equation rep-
resents a third degree equation function of λi. To solve
the third degree equation, we followed the so called
Cardano method which is also described in several
algebra textbooks (Birkhoff and Mac Lane, 1996).
Posing λ = m+n – ν/3, after several algebrical substitu-
tions (see in detail analytical procedure in Iacopini et
al., 2007) we obtain the following relations:

(5a),

(5b),

(5c),

(5d),

being:

(6a),
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Lij=½ (Lij + Lji ) + ½ (Lij - Lji ) = Dij +W´ij
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(6b),

and:

(6c).

From these relations and using flow path equations in
equations (3) and (6), it can be easily inferred that the
real part of λ1 will behave as the controlling eigenval-
ue for t→∞ only if (m+n)  >  0. If (m+n) < 0 the real
parts of the λ2 solution are larger than λ1 so they will
dominate at t→∞. Only if D > 0 the eigenvalues λ2
and λ3 are complex eigenvalues, and within this con-
dition as stated by relations in (6a) and (6b) we have
two possibilities: h < 0 or h > 0. The following analyt-
ical considerations are encountered:

1) h<0. Following equations (6a) and (6b), this con-
dition implies that m < 0 and n > 0. It could be easi-
ly demonstrated that, in this case, m+n has to be
always positive. A direct consequence of this state-
ment for equations (6a) and (6b) is that for h < 0, the
eigenvalue λ1 will dominate for t→∞ implying that
for large time the flow is controlled by the real parts
of the solution. Even if the expected 3D geometry
may be very complicated in terms of the relative ori-
entation of the vorticity vector with respect to the
stretching directions, from the above consideration
the following sub-cases could be described:

a) TrLij>0 (dilatant flow): in this case λ1 bear always
positive value. λ2 and λ3 could have positive or nega-
tive values depending if TrLij is respectively bigger or
not than m+n;

b) TrLij<0 (collapsing flow): in this case we obtain the
opposite possibility with respect to the previous one.
In fact, λ1 could have both positive and negative val-
ues, while λ2 and λ3 are always negative acting as
implosing directions;

c) TrLij=0 (isochoric flow): in this case, λ1 is always
positive (being equivalent to m+n) but λ1 and λ2 are
always negative. In the particular case of det (Lij) > 0
we have that λ1 λ2 λ3 > 0 being (from eq. 6b) λ2 λ3
= |λ2|2 |λ3|2 > 0. We conclude that the real eigenval-
ue, λ1 must always be positive. 

2) h>0. From equations (6a), (6b) and (6c) we see
that m < 0 and n > 0. The boundary condition is still
Δ > 0 but again, using the same logical approach as
before, if we assume that h > 0, we obtain that m+n <

0. The difference with respect to the first case, where
h < 0, is that in the case of   m+n < 0 the two other
real parts of the solution λ2 and λ3 are bigger than l1
and hence will dominate at t→∞. This is equivalent
to say that for large t, the asymptotic behaviour of the
time dependent solution is now controlled by the
couple of complex conjugate eigenvalues, so that now
the ghostvectors define  the flow pattern. This field of
existence corresponds to the pulsating strain fields
described by McKenzie (1979) and Weijermars
(1993, 1997) in 2D, being only weakly perturbated
by the eigenvector related to the real eigenvalue.

3) h=0. From equations (6a) and (6b) it is shown that
m+n is also zero and, as a consequence, the solution
of the general characteristic equation becomes strong-
ly simplified and defined by three eigenvalues having
the same real part. In particular, if TrLij = 0, the eigen-
values are totally complex and pattern is closed such
as an ellipse or a circle. 

Analysis and results

A detailed computation of all possible 3D flow pat-
terns or displacement paths for such a deformation
matrix is noisy and beyond the scope of this contribu-
tion. However, a criterion to obtain a first approximate
visualization of the possible flow patterns in such a sys-
tem is discussed. In order to achieve this, we find the
eigenvalues (λ1 λ2 λ3) and eigenvectors νi of the strain
rate matrix Lij and then, using the general equation
(3) describing the displacement path, try to under-
stand and describe how particles move within flow
controlled by complex eigenvalues. We describe some
low-symmetry flow pattern, like the monoclinic or tri-
clinic one, and underline the effect of strain on the
flow development. Let’s define a situation where the
real eigenvalue λ1 exceeds the real part of λ2 and λ3.
This implies that h < 0 while it is necessary that TrLij ≠ 0.
After large strain accumulations (t→∞) we expect that
the real eigenvector related to l1 will control the defor-
mation path as a repelling direction. Since this eigen-
value is real, a stable non-pulsating flow path will
develop for t→∞. The two ghostvectors will constrain
the geometry of the pattern but will not control the
final flow accumulation. The pattern will develop
from a closed or spiral pattern towards a helicoidal or
“corkscrew” pattern. In the plane defined by the other
two eigenvectors, a pulsating strain pattern, defined by
the complex eigenvalues, is developed. In this condi-
tion at least two possible cases are envisaged; a) if the
real part is zero, a closed pattern will develop (in this
case the eigenvalues are also zero), and b) if the real
part is not zero, a pulsating spiral pattern will develop.
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For case b),In this case,  the following possibilities can
be defined from equations (6a) and (6b):

i) For m+n > 2(Tr Lij)/3 we have λ1 > 0 and the real
parts of λ2, λ3 are < 0. In this situation, we should
have a repelling eigenflow within a stable spiral or
corkscrew pattern (Fig. 1).

ii) For m+n < 2(Tr Lij)/3, λ1 > 0, the real parts of λ2,
λ3 are both > 0. In this situation, the flow path have
a third extruding eigenflow component within an
unstable spiral or a corkscrew pattern (Fig. 2). If we
assume  in a second case that h > 0, being the real
eigenvalue λ1 smaller than λ2 and λ3, the following
possibilities could be encountered:

If m+n < 0 (being h < 0), λ1 < 0, the real parts of λ2
and λ3 are both < 0. In this situation, we should have
an attracting component overcoming the stable spiral
path (Fig. 1), whilst if m+n < 0 (being h < 0), λ1 < 0
but the real parts of λ2 and λ3 are > 0. In this situa-
tion, an attracting component should overcome the
unstable spiral (Fig. 2).  In this case, the geometry of
the corkscrew pattern depends strongly on the
absolute values of the real part that control the
ghostvectors. However, the dominant pattern for
t→∞ is the one controlled by the ghostvectors related
to the complex conjugates λ2 and λ3. As a conse-
quence, the flow patterns are dominated by the
ghostvectors that define a pulsating pattern.

Triclinic flow

Another context where pulsating and transient strain
could be registered by rock are the triclinic flows.
Triclinic flows (Jiang and Williams, 1998) are the
most natural examples of general 3D flow systems as
the vorticity vector is not parallel to any ISA axes.
Analytically, from the general equation (6a) describ-
ing the particle path, it is clear that a 3D geometry
of a complex pattern is strongly controlled by the
eigenvector or, more precisely, by the two ghost
eigenvectors in combination with the real eigenvec-
tor. In the triclinic case, if the analysis is referred to
an ISA system, the three eigenvectors loose their
internal symmetry (monoclinic or orthorhombic)
being function of the orientation angle β of the vor-
ticity vectors (measured to the ISA). This implies
that the new pattern shows a general 3D geometry
(Fig. 3) deviating from the one showed in figure 1
showing a more complex and asymmetric 3D flow
pattern. In figure 3,  simple triclinic pattern is
exposed. Moreover, as showed in table 1 and in
detail in Iacopini et al. (2007), in the case of a tri-
clinic flow, the field of existence of the complex
eigenflow are far more important and larger with
respect to the monoclinic one, because they do not
develop only for Wn > 1 or within extruding flow (as
in monoclinic case) but also for Wn < 1 within iso-
choric flows. This implies that the condition of Wn
> 1, indicated by Ramberg (1974) and McKenzie
(1979) as necessary condition to develop complex
eigenvalues is valid only for monoclinic and general
2D flow but not for triclinic flow. Again, as showed
in table 1 the critical vorticity number necessary to
develop complex vectors can expected both at a dila-
tant and volume constant triclinic flow system. In
the specific examples showed in table 1, the real
eigenvalue is the biggest eigenvalue, implying a sta-
ble flow controlled by the principal eigenvalue.

Figure 1. Flow pattern with real principal dominating eigenvalue
showing a stable attracting eigenflow within an attracting spiral.

Figure 2. Flow pattern with real principal dominating eigenvalue
showing an unstable eigenflow within a repelling spiral.
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Discussion

The theoretical approach presented in the previous
paragraphs clearly point out that in a 3D flow system
the existence of a stable or pulsating pattern does not
simply depends on vorticity numbers. In fact, in case
of triclinic flow, the condition of Wn > 1, crucial for
general 2D and 3D monoclinic flow does not repre-
sent a threshold values on producing a flow with com-
plex eigenvalues. Moreover the flow behaviour
depends also on: a) the relative dominance of the real
eigenvector with respect to the complex one, and b)
the strain rate and total amount of strain accumula-
tion (t→∞). 

As indicated by the deformation path equations (3),
the evolution of strain ellipse is quite complex as at
least two of the strain axes rotate and pulsate.
Depending on the type of flow (extruding or not), the
third eigenvector could complicate the deformation
path. If the real eigenvalue is larger than the real part
of the other two complex eigenvalues, the eigenvector
flow associated with such eigenvalue is expected to
grow faster than the other two. Then, the initial flow
pattern shows a pulsating but transient pattern, but
after large strain accumulation, develops a stable pat-
tern that is geometrically controlled by the attracting

or repelling component defined by the real eigenvec-
tor (Fig. 4). If the real eigenvalue is smaller than the
values of the other two complex eigenvectors, the flow
pattern is similar to the 2D case with complex eigen-
vectors (Ramberg, 1974), since the real eigenvector
will change the pulsating flow pattern only weakly.
These behaviours seem to suggest that the concept of
fabric stability is also strain and time dependent:

a) if the strain accumulation is low, theoretically it
needs too much time to reach a stable repelling or
attracting pattern and the rocks will continue to reg-
ister a non stable pulsating pattern. This condition is
expected in high grade domains where rocks do not
localize deformation or strain rate accumulation is not
very high. In this case, the extruding component does
not overcome the pulsating fabric;

b) if strain accumulation is fast with a real eigenvector
dominating and there is enough strain accumulation,

Figure 3. A possible triclinic example in ISA reference system: tri-
clinic stable attractor. Spiral pattern with an oblique disposition
of the real attracting eigenvector.

Table 1. Threshold vorticity number limits within different tri-
clinic flow types. : orientation of the vorticity vector with respect
to ISA; An: dilatancy parameters; Tn: extruding parameters; Wd:
sectional vorticity numbers.
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the flow pattern could start with a transient pulsating
strain and then rapidly merge to a stable final flow
pattern (Fig. 4). In extruding contexts, the initial
strengthening-weakening fabric development could
prelude to a more simple high strain stable condition.

Conclusion

Within a 3D deformed homogeneous and steady state
flow system, the complex eigenvalues produce
ghostvectors that could not attract or stabilize any
flow system as the correspondent real one. In order to
better define the 3D flow pattern characterized by
ghostvectors, we investigated the possible eigenvalues
distribution, discussed the nature of some related flow
pattern and predicted some new possible stable flow
pattern with vorticity number Wn > 1. The results of
the present work convey two messages:

a) in a 3D flow system, unlike the 2D system, a
field with all complex eigenvalues cannot exist
because there is always almost one real eigenvalue
controlling the flow system. Moreover, in case of
triclinic flow, the condition of Wn > 1 does not rep-
resents a necessary condition to develop complex
eigenvalues;

b) according to the kinematic calculations we suggest
that after a certain amount of strain accumulation if
the real eigenvalues is bigger than the real part of the
two other complex conjugate eigenvalues, a non-pul-
sating and stable fabric could be expected. 
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accumulation event.
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